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Challenge 

Controllers are designed for a prespecified configuration 
and their performance deteriorates when the host 
system, which is also part of the plant, varies 
significantly from what was used for the original design. 

 

Load Disconnected 
Overshoot: 26% 

Settling time: 67 ms 

Original System 
Overshoot: 15% 

Settling time: 32 ms 
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Background 

One of the grand energy challenges is to enable 
integration of large amounts of renewable energy 
resources at a competitive cost in the power grid (in the 
US, 80% by 2050 per NREL). 
What is missing is a flexible system that accommodates 
the unique characteristics of renewable resources: 
– Intermittency 
– Lack of inertia 
– Susceptibility to violation of operational limits 

Our work addresses the latter: 
– How can we make sure our units are “tightly” controlled and do 

not violate their limits even when the host system changes 
significantly? 
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Controller Design: Existing Approaches 

Existing approaches to ensure dynamics of the system 
are handled design controllers based on 
– Analytical formulation and model-based tuning (Astrom’s work) 
– Optimization (Gole’s work) 

Why not just redesign? 
– Need updated system models  
– Need a computational infrastructure to allow redesign 
– Need access to the internal parameters of the controller 
– New design will again have limited robustness to topology, 

operating point, and system parameters 
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Proposed Solution 

Improving the response by  
temporarily manipulating  
the set point without changing 
the original controller. 
Features: 
– Robust to topological changes 
– Independent of the system model 
– Requires little information about unit 

 
 

 
 

Secondary 
Controller

Primary 
Controller Unit

xsetpoint x(t)Secondary 
Controller Set Point 

Modulation

Primary 
Controller Unit

xsetpoint x(t)
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Set Point Modulation 

Initial Idea 
– Choose T1 so that the peak of the response equals the reference 
– Choose T2 to be the time of this peak 

 

Not Implementable 
– Faster-than-real-time simulator 
– Closed-form solution  
– System parameters 

 
 
 

T1 tp t 

x(t) 

0 T1 T2tp
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Finite-State Machine 

SPAACE /speɪs/: Set Point Automatic Adjustment with 
Correction Enabled 
State Numbering: 
 

 
 
 
Salient Features: 
– Based on local signals 
– Independent of model 
– Robust to changes in parameters 
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Case Study I: Set Point Change 

System Response 
DG2 step change from 0.91 pu to 1.09 pu 

DG1 and DG3 unchanged 
(40% overshoot) 
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Case Study II: Load Disconnection 

System Response 
Resistive 0.5 pu load disconnected 

(15% overshoot) 
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IEEE 34-Bus System 
Added 3 DG units and a load 

Operates in grid-connected mode 
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Case Study III: Unbalanced System 

646 645 634633632

611 684 675692671

680652

650

DG1

Test load

0 0.2 0.4 0.6 0.8 1
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1

1.5

V
 (p

u)

Time (s)

System Response 

Resistive 1 pu load switched off 
Unstable system to stable system 

IEEE 13-Bus Unbalanced System 
Added a DG unit and a test load 

Operates in islanded mode 
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Experimental Implementation 

NI cRIO: 
SPAACE 
Algorithm 

DC Power Supply 

NI cDAQ: Collect Data 

Measurement and 
Control Signals 

RSCAD 

Real-Time Digital Simulator 
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Case I: Load Energization (1.2 pu) 

Time (s)

V
 (p

u)

0.90
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Case II: Step Change in iq 

Time (s)

i q
 (p

u)

2.65 2.70 2.75 2.80 2.85 2.90 2.95
0.4
0.6
0.8
1.0
1.2

Without 
SPAACE 

With 
SPAACE 

Time (s)

0.4
0.6
0.8
1.0
1.2

i q
 (p

u)

2.65 2.70 2.75 2.80 2.85 2.90 2.95

Mp: 30% 
tsettling: 150 ms 

Mp: 0% 
tsettling: 50 ms 
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Variant: Smooth SPAACE 

SPAACE is not directly applicable to applications such as 
drive systems because the step changes introduced in 
the set point may cause torque pulsation, mechanical 
fatigue, and stress. 
 
 
A “smooth” variant of SPAACE (SSPAACE) is proposed to 
modify the set point more gracefully than SPAACE; that 
is, it introduces a smooth change as opposed to a step 
change. 
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SSPAACE with a Hybrid Structure 

SSPAACE utilizes a supervisory switching scheme based 
on observing the set point and the predicted error.  
 
 
 
 

Response  with 
SSPAACE

t

x(t) Response

Response  with 
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ProcessController
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+
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+
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Study System 

Setup at Graz University of Technology, Austria 
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Step Change in the Speed Set Point 

Simulation Results 
Step change in ωref from 500 to 600 rpm: a) base 
case, b) prefilter, c) SPAACE, and d) SSPAACE. 

Experimental Results 
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External Disturbance: Load Change 

Simulation Results 
Step change in isq from 0 to -20 to 0 A: a) base 
case: 48 rpm, b) prefilter: 48, c) SPAACE: 42, and 
d) SSPAACE: 12. 

Experimental Results 
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Sensitivity to System Parameters 

J is changed to (a) one-third and (b) three times the design 
value. Step change in ωref from 500 to 600 to 500 rpm. 
 

Simulation Results: 1/3x 
Base case—Mp: 50%; tsettling: 80 ms 
SSPAACE—Mp: ~0%; tsettling: 50 ms 

Simulation Results: 3x 
Base case—Mp: 40%; tsettling: 0.4 s 
SSPAACE—Mp: 10%; tsettling: 0.2 s 
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Conclusions 

By designing the trajectory to reduce overshoots, it is 
possible for a system to operate closer to its limits. 
Offline (PSCAD and MATLAB) and real-time (RTDS and 
Opal-RT) simulation studies as well as experimental 
results show that S/SPAACE is effective in mitigating 
transients: 
– Step change: Mitigating overshoots  
– Load energization: Eliminating peaks 
– Load disconnection in an unbalanced system: Stabilizing 

oscillatory behavior of voltage 

The significance of this work is that it can reduce the 
need for overdesign and subsequently increase asset 
utilization. 
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SSPAACE with a Hybrid Structure

SSPAACE utilizes a supervisory switching scheme based 
on observing the set point and the predicted error. 

Response  with 
SSPAACE

t

x(t) Response

Response  with 
SPAACE
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Microgrid Challenges (3/3)

Example
– Effect of large load change on controller performance.

Load Disconnected
Overshoot: 26%

Settling time: 67 ms

Original System
Overshoot: 15%

Settling time: 32 ms
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Case Study IV: Unbalanced System
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f is using IVT described before to ensure f(t) > 0.
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Effect on Stability

SPAACE does not make a stable system unstable (but 
may make an unstable system stable).
Sketch of proof (finite number of set point changes):

The response, from the final value theorem, is
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Experimental Implementation
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Thank You 
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